Effects of agricultural management on microbial communities and associated greenhouse gas fluxes

Tracy K. Teal Data Carpentry Michigan State University UC Davis

The climate is changing

- Dramatic increases in CH₄ and N₂O in the last 200 years
- High Global Warming Potential (GWP) due to time in the atmosphere and infrared absorption

Land use change and intensive agriculture increase greenhouse gas fluxes

Experiment sites

Kellogg Biological Station LTER

Methane

Robertson et al, 2000

How do microbial communities change with land management?

AG Conventional Agriculture
 ES Early Successional
 SF Successional Forest
 DF Deciduous Forest

Soil properties correlate with greenhouse gas fluxes

Soil properties

Microbes are the primary mediators of methane and nitrous oxide

Land management, sustainability and microbial communities

- How do microbial communities change with land management?
- What is the relationship between denitrifying bacteria and N₂O in agricultural soils?
- How long does it take for a community to recover from agriculture? Do all groups recover in the same way?

How do microbial communities change with land management?

Sampling design

Sampled two plots of 4 treatments In two years – 2008 and 2009

- 10 cm cores
- Soil from 5 flags pooled and sieved
- Soil frozen after being collected
- Microbial community analysis
- Soil analysis

- AG Conventional Agriculture
- ES Early Successional
- SF Successional Forest
- DF Deciduous Forest

Who's there and are there differences between treatments?

Null hypothesis – no difference in community composition between treatments

Soil properties correlate with greenhouse gas fluxes

Soil properties

Biogeochemistry and bacterial community change concomitantly

Soil properties

Microbial community

What phyla are there?

(1) Proteobacteria [class added], (2) Acidobacteria, (3) Verrucomicrobia,

- (4) Actinobacteria, (5) Bacteroidetes, (6) Planctomycetes, (7) Chloroflexi,
- (8) Gemmatimonadetes, (9) Nitrospirae, (10) Firmicutes, and
- (11) 30 additional phylum corresponding to less than 4% of the total distribution.

Shifts within phyla differentiate communities

Microbial community taxonomic composition varies between treatments

- Disproved null hypothesis there is a difference in community composition between sites
- Communities change concomitantly with soil biogeochemistry
- Community composition differs in agriculture from forested sites

Functional analysis of the community

The important thing to understand is not just who's there, but what are they doing. What is their role in ecosystem functioning, particularly in greenhouse gas production or consumption?

Challenges:

- Not many isolated or sequenced soil microbes
- Even closely related species can have different functional capacity
- Organisms not closely related can have similar functional capacity

Functional potential of the microbial community

NITROGEN METABOLISM

Determining the composition and abundance of genes suggests the communities' functional potential

Caveats with metagenomic sequencing

- Undersampling of communities
- Database limitations
- Sequencing active and dormant community
- Sequencing errors

Why metagenomics is terrible and why we use it anyway

Annotate shotgun reads

NITROGEN METABOLISM

Matrix of normalized gene abundance by treatment

A	В	C .	D	E	
Function	Subsystem	T1R1_2008	T1R2_2008	T1R1_2009	T1I
(R)-citramalate synthase (EC 2.3.1.182)	Amino Acids and Derivatives	84	103	53	
1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase (EC 1.13.11.54)	Amino Acids and Derivatives	9	4	8	
1-pyrroline-4-hydroxy-2-carboxylate deaminase (EC 3.5.4.22)	Amino Acids and Derivatives	21	17	17	
2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-acetyltransferase (EC 2.3.1.89)	Amino Acids and Derivatives	28	23	21	
2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase (EC 2.3.1.117)	Amino Acids and Derivatives	71	72	42	
2,3-diketo-5-methylthiopentyl-1-phosphate enolase	Amino Acids and Derivatives	9	10	6	
2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase (EC 3.1.3.77)	Amino Acids and Derivatives	9	10	5	
2,4-diaminopentanoate dehydrogenase (EC 1.4.1.12)	Amino Acids and Derivatives	1	0	0	
2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase (EC 4.1.2)	Amino Acids and Derivatives	62	42	38	
2-Amino-2-deoxy-isochorismate synthase (EC 4.1.3)	Amino Acids and Derivatives	2	8	0	
2-Oxobutyrate dehydrogenase E1 (EC:1.2.4.1)	Amino Acids and Derivatives	0	1	2	
2-Oxobutyrate oxidase, putative	Amino Acids and Derivatives	11	6	5	
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase (EC 2.5.1)	Amino Acids and Derivatives	0	1	0	
2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (EC 4.1.1.45)	Amino Acids and Derivatives	52	52	43	
2-amino-3-ketobutyrate coenzyme A ligase (EC 2.3.1.29)	Amino Acids and Derivatives	107	97	53	
2-amino-4-ketopentanoate thiolase, beta subunit	Amino Acids and Derivatives	1	0	0	
2-aminomuconate deaminase (EC 3.5.99.5)	Amino Acids and Derivatives	2	0	0	
2-aminomuconate semialdehyde dehydrogenase (EC 1.2.1.32)	Amino Acids and Derivatives	6	3	3	
2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase	Amino Acids and Derivatives	3	3	1	
2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase related protein	Amino Acids and Derivatives	3	2	1	

Functional potential changes with land management

Analysis of 7058 genes annotated by MG-RAST against the SEED database

Functional potential of communities differs with treatment

- Shotgun metagenomics can be used to look at the functional potential of a sample. It reflects only what's present in the soil, not what metabolism is occurring.
- There are differences in the functional potential of the communities that parallel that of taxonomic composition and soil biogeochemistry

What is the relationship between denitrifying bacteria and N₂O in agricultural soils?

Denitrifying microbes

Denitrification contributes to the differentiation of communities

PCoA1 20.2%

More denitrification potential in Ag soils

Not only abundance contributes to N₂O flux

Not only abundance contributes to N₂O flux

Types of denitrification

Variability in denitrifier composition

High denitrifer diversity

Types of denitrification

Proportion of Ammonium Oxidizing Bacteria (AOB) increases significantly in AG

AOB proportion correlates with fertilization level and N₂O production

KBS Microbial metagenomics course

Microbial communities in Ag sites with higher nitrogen availability are also poised for N_2O production

What is the relationship between denitrifying bacteria and N_2O in agricultural soils ?

- Denitrifier abundance and composition changes with agricultural management. Communities more diverse than previously thought and poised for denitrification.
- May be potential for microbial mediation

How long does it take for a community to recover from agriculture? Do all groups recover in the same way?

More than 20 year recovery for bacterial community

Microbial community

More than 20 year recovery for bacterial community

Microbial community

More than 20 year recovery for denitrifiers

Methanotrophs take more than 40 years to recover

- Soil team
 Vicente Gomez-Alvarez
 Uri Levine
 Keara Towery
 Bernard Schroeter
 John Dover
 Zarraz Lee
 Brendan O'Neill
 Ben Roller
 Tom Schmidt
- × Funding
 - × DOE GLBRC
 - \times NSF
 - × NSF Postdoctoral Fellowship

N₂O CH₄

More on denitrifiers

AOB proportion correlates with fertilization level and N₂O production

50

KBS Microbial metagenomics course

AOB proportion correlates with cover crops and N₂O production

Brendan O'Neill and Heli Juottonen

Suggests source of nitrogen is not important for AOBs or N_2O production

Potentially Mineralizable N

Brendan O'Neill

Heterotrophic denitrification (no AOBs)

Brendan O'Neill

Carbon availability also important

Types of denitrification

More denitrifiers and more with the potential just produce N₂O but ratios and mechanisms still not understood

Methanotrophs

Methanotrophs use methane as a sole source of carbon and energy

Methanotroph richness correlates with methane consumption

X

Methane in biofuel crops

× Clone libraries

× Classification of pmoA / amoA

GFClassify – Ribosomal Database Project Jordan Fish

imes Leilei Ruan and G. Philip Robertson

× Leilei Ruan and G. Philip Robertson

61

Site type

Werling et al, PNAS 2014

Amendments to recover methane oxidation

Enrichments consume methane at high concentrations

